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LETTER TO THE EDITOR 

Analytic regularisation and Ward identity in a broken 
supersymmetric model 

S Kumar 
Physics Department, Berhampur University, Berhampur-760 007, Orissa, India 

Received 4 March 1986 

Abstract. A Ward identity in a broken supersymmetric model involving a supersymmetry 
current is studied using analytic regularisation. We show, in the one-loop approximation, 
that this Ward identity is satisfied if the amplitudes are regularised by the analytic 
regularisation method. 

Some time ago we analysed the possibility of using analytic regularisation in supersym- 
metric theories. In this context, we first studied the anomaly (Kumar and Fujii 1982) 
of the supercurrent in the supersymmetric Yang-Mills multiplet. Later, we used this 
regularisation scheme to study the Ward identities (Kumar and Fujii 1983) in the 
massless Wess-Zumino model. 

Earlier, several authors studied the supersymmetric Ward identities in various 
models using different regularisation methods. Townsend and van Nieuwenhuizen 
(1979) have studied the Ward identities in the massless Wess-Zumino model (1974a, b)  
using dimensional regularisation ('t Hooft and Veltman 1972). Sezgin (1980) and 
Hagiwara and Majumdar (1981) have extended these results to the study of the Ward 
identities in the massive Wess-Zumino model. Capper er a1 (1980) studied the Ward 
identities in the vector supersymmetric model by using the dimensional reduction 
method (Siege1 1979). 

In this letter we study a Ward identity in the Wess-Zumino model (Wess and 
Zumino 1974a, b) in the presence of symmetry breaking and mass terms. As is well 
known, in this model the spontaneous breaking of supersymmetry is unstable. We 
resort to explicit breaking of supersymmetry (Illiopoulos and Zumino 1974). The 
specific Ward identity we propose to study involves one supersymmetry current and 
a fermion field. The amplitudes entering in this identity are regularised by an analytic 
regularisation method (Bollini et a1 1964, Speer 1968, 1974). 

Very recently a similar regularisation scheme (Alfaro 1985) has been proposed in 
the context of stochastic quantisation of field theories (Parisi and Wu 1981, Breit et 
a1 1984). Alfaro (1985) also made an attempt to establish a direct contact between 
stochastic regularisation and analytic regularisation. 

The present work differs from our earlier one (Kumar and Fujii 1983) in several 
ways. First of all we consider the Wess-Zumino model in the presence of mass terms. 
Secondly, the supersymmetry is broken by an explicit term in the Lagrangian. Thirdly, 
the Ward identity we consider here is different in the sense that it involves one 
supersymmetry current whereas in our earlier work we considered Ward identities 
involving only various fields. The model we consider is described by the following 
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Lagrangian (Wess and Zumino 1974a, b, Illiopoulos and Zumino 1974): 

L = - $[ (d,A)’ + (d,B)2 + $ B J ,  - F’ - G 2 ]  + m( FA + G B  -;I,@) 

+ g [  FA2 - FB’+ 2GAB - $ ( A  - iy,B)+)] - CA. (1) 

The fields in this model are two scalar fields A and F, two pseudoscalar fields B and 
G and a Majorana spinor J/. Under infinitesimal supersymmetry transformations these 
fields transform ast  

SA = E+ (2a )  

SB = idy,J, (2b )  

SF = EL?$ ( 2 c )  

SG = iEy5aJ/ ( 2 d )  

SJ, = B(A + i y , B ) ~  + (F + i y 5 G )  E ( 2 e )  
where E is a constant anticommuting Majorana spinor. 

Apart from the last term, the Lagrangian in equation (1) changes under the 
supersymmetry transformations of equations ( 2 )  by a total derivative. In the symmetric 
case (c  = 0) the Lagrangian is invariant under the transformation of equations ( 2 )  and 
one can construct the conserved Noether current 

J, = [a( A - i y 5 B )  + m ( A  + iy,B) + ( A  + i y5B)’]  y,+. (3) 
The last term, -CA (c  is a constant), in equation (1) breaks the supersymmetry and 

the Noether current in equation (3) is no longer conserved; rather, one has 

a,J, = c+. (4) 
We can eliminate the linear term, -CA, from equation (1) by shifting the fields A 

and F, A + A + a, F + F +  f and demanding that the fields A and F have vanishing 
vacuum expectation values to all orders. This gives us two consistency conditions 
which determine the parameters a and f: In the tree approximation these conditions 
are 

( 5 a )  

(56) 

f + ma + ga’ = 0 

mf + 2gaf - c = 0. 

Further, the masses of the fields +, A and B are no longer equal but are given in 
the lowest order by the following relations: 

m,=m+2ga ( 6 0 )  

Now with the shift of the fields the current in equation (3) also changes and it 
takes the form 

J, = [a( A - i y 5 B )  + m, ( A  + i y5B)  + g( A + i ~ ~ l . 3 ) ~  + ( m,a - ga’)] yw+. (7) 

t We use the following convention for the y matrices: the four y matrices are Hermitian and satisfy 
Ir,, YJ = 26,, (P, y = 1, 2, 3, 4). 6 is defined by @+y4 and yS = Y ~ Y ~ Y ~ Y ~ .  



Letter to the Editor L469 

The Ward identity we intend to study in this letter is the following (de Wit 1975) 

a,, ( T(J ,  (x)  $(o) ) )o  = C( T( J/ (X) $(o) ) )o+  S4(X).f 

ip,rt(p) = c -ifs,'(p). (9) 

(8) 

One can write this Ward identity in momentum space as 

In equation (9) T $ ( p )  is the irreducible Green function involving a supersymmetry 
current and a fermion. S,' is the inverse fermion propagator. 

This identity has been studied in detail by de Wit (1975) using the higher-order 
derivative regularisation. As he points out, this Ward identity is important in proving 
the existence of zero-mass Goldstone fermions when spontaneously broken realisation 
of supersymmetry is considered. 

.-.q 
' s  
' I  
8. I 

X x \ . t . *  _ P  , P  
. I  
, I  

t , P  . 
P - q  

Figure 1. One-loop contribution to I'z. Full lines represent the fermions and broken lines 
represent the bosons. The crosses represent J,. 

We shall now calculate Tt (p)  and S , ' ( p )  on the one-loop approximation, using 
analytic regularisation and verify the Ward identity in equation (9). The diagrams 
contributing to r$ to this order are shown in figure 1. The amplitude corresponding 
to figure 1 is given by 

r $ ( p )  = (m,a -ga2)y, -- ig 4 1 d4q[DAA(q)-DBB(q)ly, 

+ d4qigyp [ DAA( 4 ) s, (P - ) + ( y5 s, ( p  - 4 )  751 

+ $1 d4qm+yp DAA ( 4 Is+ (P - 4 )  - D E B  ( ) 75 s, (P - 4 ) 7 5 1 .  (10) 

P - Q  

Figure 2. Self-energy contribution to fermion propagator S,. 

Similarly, the one-loop contribution to the fermion propagator is represented in 
figure 2. Taking this self-energy contribution into account we can write S,'(p) as 

4ig2 
S i ' ( p ) = d - i m , - y  1 d 4 ~ [ D A A ( ~ ) s ~ ( P - ~ 4 ) - D B B ( q ) ~ 5 s + ( p - ~ ) ~ 5 1 .  (11) 

Figure 3 represents the two consistency conditions in the one-loop order which 
determine the parameters U and 1: Mathematically these conditions to this order are 
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Figure 3. Diagrammatic representation of the consistency conditions that determine the 
parameters a and f: 

given by 

The various zeroth-order propagators entering in equations (lo)-( 12) are given below: 

We now substitute the values of r: and S,' from equations (10) and (11) into the 
Ward identity, equation (9). After using the consistency condition of equation (126) 
and rearranging various terms the Ward identity in equation (9) can be written as 

One can see that the integrals on the left-hand side (LHS) of this equation are 
quadratically divergent and on the right-hand side (RHS) linearly divergent. In order 
to evaluate these integrals unambiguously one uses a regularisation scheme. This is 
where we introduce analytic regularisation (Bollini et al 1964, Speer 1968, 1974). As 
is known, in this regularisation scheme one modifies the propagators by introducing 
an exponent ( A )  in the denominators which regularises the divergences. All the 
divergences then appear as poles in this regularising exponent. Finally, one employs 
a minimal subtraction scheme to remove these divergences and takes the limit A + 0. 
In  our case we adopt the following strategy. To evaluate the divergent integrals on 
the LHS of equation (14) we modify only the fermion propagator whereas on the RHS 
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we modify only the boson propagators, i.e. 

This point is very important in the verification of the Ward identity. If we modify 
only one type of propagator then the Ward identity is violated by finite terms. In our 
earlier work (Kumar and Fujii 1982, 1983) an almost similar procedure was adopted. 
This we feel is typical of supersymmetric theories where cancellation between the Bose 
and Fermi contributions in any given calculation takes place. 

In the above expressions (15a)-(15c) the exponent A is the regularising parameter. 
With these modifications we calculate the momentum integrals in equation (14). Follow- 
ing the usual procedure of combining the denominators, shifting the integration variable 
and then carrying out the momentum integration, one obtains for the LHS of equation 
(14) 

(1 -x)” 
LHS of equation (14) =2i.rr2#gf+- if lo1 dx- ( L ~ ) A  Lim$p2(lbx) 

( l - x y  + 2gffix -&,I +T i.rr2 I,’ dx- ( ~ 1 2 ) A  [im,p2(1 -x)+2gf,x+#m$]. 

In equation (16) L2 and C2 are given by 

L~ = -p2x2 - (2gf- p 2 ) x  + mZ, (17a) 

L ’ ~  = -p2x2+(2gf+p2)x+ m$. (176) 

To carry out the x integration in equation (16) we expand the integrand into powers 
of A and retain terms up to order A. With this, we have 

LHS of equation (14) = -i.rr2#gf +&r2m,p2 

i .rr2 
+-(im,p2+2gf#)+.rr dx(1-x)(lnL2+ln L‘2) 

A 

-2i.rr2gf, lo1 dxx(1n L2+ln Lf2)  

+i.rr2#m: Io1 dx(1n L2-ln Lf2) .  

Following exactly the same procedure the RHS of equation (14) is evaluated. The result 
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is 

8 n4 
RHS of equation (14) = -- (c  - m f )  + (2gf+ im,#) 

g 

dxx( lnL2+lnL”)  

+ n2mq lo1 dx(1n L2 -In L”) (19) 

Now substituting expressions (18) and (19) into equation (14) and making cancellations 
from both sides we obtain 

(20) 
p 2  [01d~(1-2x)(ln L2+ln L”)-2gf dx(1n L2-ln L”)=-(m,f-c). 8 n2 

“*g 
Next evaluating the consistency condition in equation (12a) explicitly we have 

(8n2/m,g)(mJ-c)=(m2Aln mi-2m;ln m;+miln m i ) .  (21) 

With L2 and L” given by equations (17) we perform the x integration on the LHS of 
equation (20). The x integration is lengthy but simple and it is easy to check that the 
final result is equal to the RHS of equation (21), thus verifying the Ward identity of 
equation (9). 

The author would like to thank N C Mohapatra and A Khare for useful discussions. 
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